

Large Loss Matters in Weakly Supervised Multi-Label Classification

Introduction

Annotating as a **partial label** can reduce annotation cost for multi-label classification.

It enables us to collect large-scale multi-label dataset with relatively small effort. (e.g. JFT-300M, InstagramNet-1B)

Assuming unobserved labels as negative (AN) introduces **noisy** supervision which may hamper the model learning.

	[a]
car	\checkmark
person	\checkmark
boat	X
bear	X
apple	X

[a] : full label; [b] : partial label; [c] : AN target with false negative

Our key observation : Memorization effect

0.12 -When training a model with noisy AN target, 0.10 the model first fits 0.08 into clean label දි 0.06 and then gradually fits into noisy label! 0.04 -0.02 We can discriminate 0.00 whether a specific sample is noisy with its loss value! phase (before training finish) Warmup

Youngwook Kim^{1*}, Jae Myung Kim^{2*}, Zeynep Akata^{2,3}, Jungwoo Lee^{1,4}

¹Seoul National University, ²University of Tübingen, ³Max Plank Institute, ⁴HodooAl Lab

Methodology

Main idea : <u>Reject or correct large loss samples during training!</u>

Define AN target $y_i^{AN} = \begin{cases} 1, & i \in S^p \\ 0, & i \in S^n \cup S^u \end{cases}$ where $\begin{array}{l} \mathcal{S}^p = \{i | y_i = 1\} \\ \mathcal{S}^n = \{i | y_i = 0\} \\ \mathcal{S}^u = \{i | y_i = u\} \end{cases}$

Introduce the weight term λ_i in a standard BCE loss function

2) LL-Ct (Correction): $\lambda_i = \begin{cases} \frac{\log f(\boldsymbol{x})_i}{\log(1-f(\boldsymbol{x})_i)}, & i \in S^u \text{ and } l_i > R(t) \\ 1, & \text{otherwise} \end{cases}$

R(t): Top $[(t-1) \cdot \Delta_{rel}]$ % loss value in mini-batch at epoch t

3) LL-Cp (Correction) : $\lambda_i = 1$ for all i(permanent) with $y_i^{AN} = \begin{cases} 1, \\ unchase \end{cases}$

R(t): Top $[\Delta_{rel}]$ % loss value in mini-batch at epoch t

$$i \in \mathcal{S}^u$$
 and $l_i > R(t)$
nged, otherwise

Results

Our proposed methods achieve state-of-the-art performance both on artificially created real partial label datasets! & (OpenImages V3)

Mathad	End-to-end				LinearInit.			
Method	VOC	COCO	NUSWIDE	CUB	VOC	COCO	NUSWIDE	CUB
Full label	90.2	78.0	54.5	32.9	91.1	77.2	54.9	34.0
Naive AN	85.1	64.1	42.0	19.1	86.9	68.7	47.6	20.9
WAN [7, 28]	86.5	64.8	46.3	20.3	87.1	68.0	47.5	21.1
LSAN [7, 39]	86.7	66.9	44.9	17.9	86.5	69.2	50.5	16.6
EPR [7]	85.5	63.3	46.0	20.0	84.9	66.8	48.1	21.2
ROLE [7]	87.9	66.3	43.1	15.0	88.2	69.0	51.0	16.8
LL-R (Ours)	89.2	71.0	47.4	19.5	89.4	71.9	49.1	21.5
LL-Ct (Ours)	89.0	70.5	48.0	20.4	89.3	71.6	49.6	21.8
LL-Cp (Ours)	88.4	70.7	48.3	20.1	88.3	71.0	49.4	21.4

More analyses...

Qualitative results

(corrected labels on LL-Ct)

Method	G1	G2	G3	G4	G5	All Gs
Naive IU	69.5	70.3	74.8	79.2	85.5	75.9
Curriculum [9]	70.4	71.3	76.2	80.5	86.8	77.1
IMCL [16]	71.0	72.6	77.6	81.8	87.3	78.1
Naive AN	77.1	78.7	81.5	84.1	88.8	82.0
WAN [7,28]	71.8	72.8	76.3	79.7	84.7	77.0
LSAN [7, 39]	68.4	69.3	73.7	77.9	85.6	75.0
LL-R (Ours)	77.4	79.1	82.0	84.5	89.5	82.5
LL-Ct (Ours)	77.7	79.3	82.1	84.7	89.4	82.6
LL-Cp (Ours)	77.6	79.1	81.9	84.6	89.4	82.5

• vase, person, chair vase, person, chair, dining table vase, person, chair, dining table. bottle, wine glass

Labelling efficiency

Model explanation

Pointing game

Method	VOC	COCO
Naive AN	78.9	46.4
WAN [7,28]	79.8	47.7
LSAN [7, 39]	79.5	49.1
EPR [7]	80.2	48.1
ROLE [7]	82.5	51.5
LL-R (Ours)	83.7	54.0
LL-Ct (Ours)	83.7	54.1
LL-Cp (Ours)	83.5	53.3

Our code is also available at

